Status Report: Effect of Faults on Groundwater Flow in the Carrizo-Wilcox Aquifer in Central Texas

Topics

- Literature Review and Hydrogeologic Data Associated with Colorado Alluvium
- Additional Model Layer to Represent the Colorado Alluvium
- Refined Numerical Grid near Colorado River and Tributaries
- Next Steps

Literature Review: Alluvium Footprint

Groundwater Resources Bastrop County (1972)

Surface geology map (BEG, 1974)

Literature Review: Hydraulic Properties

Hibbs and Sharp (1993)

- Hydraulic conductivity varies between 95 ft/day to 170 ft/day
- No stream bed resistence affect connection between Colorado River and Colorado alluvium
- Grain-size analysis data indicate a coarser lag gravel at base of the alluvium

Gerecht and others (1993)

- Hydraulic conductivity varies between
 33 ft/day to 164 ft/day
- Vertical hydraulic conductivity is about
 52 ft/day

Site #2 near City of Bastrop (Hibbs and Sharp, 1993)

Data Analysis: Wells Information from TWDB Databases

Estimate Base of Alluvium

- 261 lithology profiles
- Base of gravel or coarse sandy deposit or top of a muddy/silty sequence

TDLR Well 156938		
Depth Interval (Ft.)	Description	Unit
0 - 11	Top Brown Sand	Alluvial System
11 - 20	Coarse Sand / Brown Clay	Alluvial System
20 - 45	Pea Gravel	Alluvial System
45 - 60	Pea Gravel / Large Gravel	Alluvial System
60 - 105	Gray Shale / Sandy Green Shale	Weches Formation
105 - 125	Grow-Brown Shale	Weches Formation
125 - 158	Gray-Brown Sand / Iron Rock	Weches Formation

Estimate of Transmissivity (ft²/day)

- 14 values
- Geometric mean of hydraulic conductivity is 75 ft/day

Alluvium Wells

Colorado Alluvium: Preliminary Determination for Base Elevation

Data

- 260 well locations
- Bathymetry from LCRA terrain map
- Added control points where coverage was sparse. Depth estimated based on hydrogeologic studies

Map

- 0.25-mile by 0.25-mile grid cells
- Area between red and purple lines will be represented in updated GAM

Colorado Alluvium: Water Levels from TWDB Databases

- Water levels from 80 wells
- Only one well with more than two water level measurements
- Used data qualitatively to evaluate flow directions
- Research studies indicate flow to river

Literature Review: LCRA Low-Flow Study (Saunders, 2006)

**9 cfs is less than potential error with stagedischarge rating associated with gauges

Average

Baseflow

(in/yr)

NA

1.8

NA

1.9

**Saunders (2009) estimates 30 cfs, TBWE (1960) estimates 36 cfs

Columbus

Literature Review: LCRA Hydromet Network and DROM

LCRA Daily River Operations Model (DROM)

- Uses the RiverWare modeling platform
- Hourly Routing Model simulates flow in the lower Colorado River
- Used to estimate gains and losses between gauges
- Accounts for:
 - Lake Travis releases
 - Tributary inflows
 - Downstream diversions
 - Austin return flows
- Ungauged flows include storm runoff and groundwater contributions
- Gauge uncertainty, flow variability (routing changes), and other issues can affect accuracy
- During dry periods, groundwater gain/loss can be estimated with greater accuracy

http://hydromet.lcra.org/full.aspx

Hierarchy of Groundwater Flow Systems

NOT TO SCALE

Local ground-water flow path

Intermediate ground-water flow path

Regional ground-water flow path

Indicates flow simulated by the regional ground-water flow model constructed for this investigation

Note: Most GAMs and regional groundwater flow models do not have the vertical resolution in their layering to represent local flow paths.

Addition of a Colorado Alluvium Layer: Support the Creation of a Shallow Flow Zone

Addition of a Colorado Alluvium Layer: Examples

Comparison of Model Grid Cells in Vicinity of Colorado River: MODFLOW 96 and MODFLOW-USG

Comparison of Colorado River Location: MODFLOW 96 and MODFLOW-USG

Planned Activities

- Investigate possible benefits of Using LCRA DROM as a tool for characterizing GW-SW interaction
- Develop comprehensive work plan for GW-SW interactions
 - Paired stream gauge –groundwater well locations
 - Methodologies and costs for field work
 - Proposed hydrograph separation techniques
 - Possible partnerships or funding sources
- Submit Draft Report on June 30, 2017
 - Literature Search
 - Update on progress of revised GAM
 - Work Plan
- Submit Final Report on August 31, 2017

